Progress in the science and technology of direct drive laser fusion with the KrF laser

Fusion Power Associates Meeting
1 December 2010

Presented by:
Steve Obenschain
Plasma Physics Division
U.S. Naval Research Laboratory

Work by the NRL laser fusion research team

Work supported by: the Office of Naval Research and the U.S. Department of Energy, NNSA.

maintaining the data needed, and c including suggestions for reducing	lection of information is estimated to ompleting and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding ar DMB control number.	ion of information. Send comments arters Services, Directorate for Information	regarding this burden estimate or mation Operations and Reports	or any other aspect of th , 1215 Jefferson Davis l	is collection of information, Highway, Suite 1204, Arlington	
1. REPORT DATE 01 DEC 2010		2. REPORT TYPE		3. DATES COVE 00-00-2010	red to 00-00-2010	
4. TITLE AND SUBTITLE				5a. CONTRACT NUMBER		
Progress in the science and technology of direct drive laser fusion with the KrF laser					5b. GRANT NUMBER	
the KIT laser				5c. PROGRAM ELEMENT NUMBER		
6. AUTHOR(S)				5d. PROJECT NUMBER		
			5e. TASK NUMBER			
				5f. WORK UNIT NUMBER		
	ZATION NAME(S) AND AE search,NRL laser fu	8. PERFORMING ORGANIZATION REPORT NUMBER				
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)				10. SPONSOR/MONITOR'S ACRONYM(S)		
				11. SPONSOR/M NUMBER(S)	ONITOR'S REPORT	
12. DISTRIBUTION/AVAII Approved for publ	LABILITY STATEMENT ic release; distributi	on unlimited				
13. SUPPLEMENTARY NO Work supported by	otes y: the Office of Nava	al Research and the	U.S. Department	of Energy, N	INSA.	
14. ABSTRACT						
15. SUBJECT TERMS						
16. SECURITY CLASSIFIC	17. LIMITATION OF	18. NUMBER	19a. NAME OF			
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	Public Release	OF PAGES 22	RESPONSIBLE PERSON	

Report Documentation Page

Form Approved OMB No. 0704-0188

Opening remarks on path towards Inertial Fusion Energy (IFE)

- Community needs to work together to provide the technical case for funding an IFE program.
- IFE program should nurture competition, with judgments made on the basis of technical progress and the potential of the various approaches to IFE.
- Direct-drive with lasers looks very attractive for IFE, the physics and needed technologies are mature and advancing.
- KrF provides physics advantages for direct drive.
- KrF's demonstrated performance is competitive with solid state lasers as a high-rep-rate durable, efficient IFE driver. (on several important parameters KrF technology leads)

Direct Laser Drive is a better choice for Energy

Indirect Drive (initial path for NIF)

- ID Ignition being explored on NIF
- Providing high enough gain for pure fusion energy is challenging.

- DD Ignition physics can be explored on NIF.
- More efficient use of laser light, and greater flexibility in applying drive provides potential for much higher gains.

. .

KrF light helps Direct Drive target physics (1)

Provides the deepest UV light of all ICF lasers (λ =248 nm)

Use of less laser energy

KrF Light helps the target physics (2)

- KrF has most uniform target illumination of all ICF lasers.
 - Reduces seed for hydrodynamic instability

Actual Nike KrF focal profile

- KrF focal profile can zoom to "follow" an imploding pellet.
 - More laser absorbed, reduces required energy by 30%

Shock Ignited (SI) direct drive targets*

Pellet shell is accelerated to sub-ignition velocity (<300 km/sec), and ignited by a converging shock produced by high intensity spike in the laser pulse.

Low aspect ratio pellet helps mitigate hydro instability

Peak main drive is 1 to 2×10^{15} W/cm² Igniter pulse is ~ 10^{16} W/cm²

^{*} R. Betti et al., Phys.Rev.Lett. **98**, 155001 (2007)

Simulations show very high gains with KrF driven shock ignition – similar to those predicted for Fast Ignition.

Shock ignition benefits from shorter λ and zooming

	KrF 248 nm Zoom	glass 351 nm Zoom	glass 351 nm no zoom
laser energy	230 kJ	430 kJ	645 kJ
compression energy	160 kJ	280 kJ	360 kJ
gain	97	56	35
24	91	30	33
absorption	77%	56%	39%
100		AND VOTONO A	2010/10/20/20
absorption	77% 87%	56%	39%

pressure ~ $I_{abs}^{0.7} \lambda^{-0.25}$

1-D Hydrocode simulations

Simulations predict sufficient energy gains (G) for development of energy application.

- G ~100 with a 500kJ KrF laser → Fusion Test Facility (FTF)
- G ~170 with a 1MJ KrF laser
- → Fusion Power plants

G ~250 with a 2 MJ KrF laser

Desire G×η≥10 for energy application η = laser wall plug efficiency \approx 7% for KrF → need G ≥ 140

Nike is employed for studies of hydrodynamics and LPI

Laser Plasma Instability limits the maximum intensity

- ➤ Can produce high energy electrons that preheat DT fuel
- ➤ Can scatters laser beam, reducing drive efficiency

Nike experiments are exploring thresholds for quarter-critical density laser plasma instability

Longer density scalelength plasma produced by ns laser pulses reduced thresholds (as expected)

 $I_{th} = 2 \times 10^{15} \text{ W/cm}^2 \text{ for } 325 \text{ ps pulse}$ $I_{th} = 1.2 \times 10^{15} \text{ W/cm}^2 \text{ for } 1 \text{ ns pulse}$

Computed density scale-lengths @ threshold intensity

 \sim 60 μ m with 325 ps pulse \sim 100 μ m with 1 ns pulse

Similar physics to that observed with λ =351 nm lasers, but quarter critical instability thresholds are higher. (as expected)

KrF, LPI and Direct Drive

- Both theory and experiment indicate use of KrF helps suppress laser plasma instability.
- 1 Thz bandwidth used in current experiments, 3Thz available with Nike.that may help further supress LPI.
- May not be able to operate much above quarter critical instability thresholds during compression stage of SI.
- Can reduce peak intensity during compression by increasing aspect ratio, but limited by hydro-instability.
- Use of shorter λ and possibly greater $\Delta\omega$ are the only unambiguously positive actions to reduce risk from LPI.
- Preheat from LPI hot elections should not an issue during igniter pulse provided T_{hot} < 100 keV per LASNEX simulations by J. Perkins.

There has been continued progress in highenergy high-repitition rate KrF laser technology

Electra Krypton Fluoride (KrF) Laser

Laser Energy: 300 to 700 Joules

Repetition rate: up to 5 pulses per second

Continuous Runs: 10 hrs at 2.5 Hz (90,000 shots)

Path to much higher durability for Electra identified and developed.

Replace spark-gap switched pulse power with all solid state system.

Eliminate "late time" voltage on diode that causes erosion when plasma between anode and cathode close.

Progress in KrF science and technology

All solid state 10 Hz 180 kV 5KA pulse power system >10⁷ shots continuous

Components show > 300 M shots, no failures

mponents show > 500 M shots, no failures — Ceramic Cathode — Patterned C

Demonstrated two methods to suppress E-beam instability on Nike Main amplifier

Ceramic Cathode Patterned cathode

High efficiency E-beam transport to gas

electron beam guided by tailored magnetic field

>7% wall-plug efficiency looks feasible.

Intrinsic (experiment)	12%
Pulsed power (experiment)	82%
Hibachi @ 800 kV (experiment)	80%
Optical train to target (est)	95%
Ancillaries (est)	95%
Global Efficiency	7.1%

IFE vision

A primary goal of the IFE community should be to develop the technologies for, construct and operate a high repetition rate inertial fusion test facility (FTF) in the decade immediately following NIF ignition.

Adapted from suggestion by Professor Said Abdel-Khalik

See Thursday afternoon presentation by John Sethian: "The need for an Inertial Fusion Engineering Test Facility"

We believe this IFE vision can and should be implemented!

Summary

- Shock ignited direct drive continues to look very attractive for the energy application.
- Both simulations and experiments indicate KrF light significantly improves the laser-target interaction physics.
- Good progress in the S&T of E-beam pumped KrF towards the goal of obtaining the high system durability needed for IFE.

References

Laser Inertial fusion energy technology

J.D. Sethian et al, "The science and technologies for fusion energy with lasers and direct drive targets," Proceedings, 23rd Symposium on Fusion Engineering. *IEEE Transactions on Plasma Science*. Vol. 38, NO. 4, 690 (2010).

High Average Power :Laser Program http://aries.ucsd.edu/HAPL

Shock Ignited direct drive designs

J. Schmitt, J.W. Bates, S. P. Obenschain, S T. Zalesak and D. E. Fyfe, "Shock Ignition target design for inertial fusion energy, *Physics of Plasmas* 17,042701 (2010).

R. Betti, C.D. Zhou, K.S. Anderson, L.J. Perkins, W. Theobald and A.A.. Solodov, Physical Review Letters 98, 0155001 (2007).

Fusion Test Facility (FTF) utilizing a KrF laser

S. P. Obenschain, J.D. Sethian and A. J. Schmitt, "A laser based Fusion Test Facility," *Fusion Science and Technology*, **56**, 594-603, August 2009.

R. H. Lehmberg, J. L. Guiliani, and A.J. Schmitt, "Pulse shaping and energy storage capabilities of angularly multiplexed KrF laser fusion drivers," *Journal of Applied Physics* **106**, 023103 (2009).